
Y. Sharath et al Int. Journal of Engineering Research and Applications                         www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.681-689 

 

 
www.ijera.com                                                                                                                              681 | P a g e  

 

 

 

Error Locked Encoder and Decoder for Nanomemory 

Application 
 

Y. Sharath
1
, S.Srivani

2
, O.M.Chandrika

3
, B.Gopi Krishna

4 

 

Abstract 
Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate 

in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft 

errors as well and must also be protected. We introduce a new approach to design fault-secure encoder and 

decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new 

class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly 

simple. We further quantify the importance of protecting encoder and decoder circuitry against transient errors, 

illustrating a scenario where the system failure rate (FIT) is dominated by the failure rate of the encoder and 

decoder. We prove that Euclidean Geometry Low-Density Parity-Check (EG-LDPC) codes have the fault-secure 

detector capability. Using some of the smaller EG-LDPC codes, we can tolerate bit or nanowire defect rates of 

10% and fault rates of 10
-18 

upsets/device/cycle, achieving a FIT rate at or below one for the entire memory 

system and a memory density of 10
11

 bit/cm with nanowire pitch of 10 nm for memory blocks of 10 Mb or 

larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead. 

Key terms: Decoder, encoder, fault tolerant, memory, density parity-check , fault-secure detector and 

nanotechnology. 

 

I. INTRODUCTION 
Memory cells have been protected from soft 

errors for more than a decade; due to the increase in 

soft error rate in logic circuits, the encoder and 

decoder circuitry around the memory blocks have 

become susceptible to soft errors as well and must 

also be protected. We introduce a new approach to 

design fault-secure encoder and decoder circuitry for 

memory designs. Nanotechnology provides smaller, 

faster, and lower energy devices, which allow more 

powerful and compact circuitry; however, these 

benefits come with a cost, the nano scale devices may 

be less reliable. Thermal- and shot-noise estimations 

alone suggest that the transient fault rate of an 

individual nano scale device (e.g., transistor or nano 

wire) may be orders of magnitude higher than today‟s 

devices. As a result, we can expect combinational 

logic to be susceptible to transient faults, not just the 

storage and communication systems. Therefore, to 

build fault-tolerant nano scale systems, we must 

protect both combinational logic and memory against 

transient faults. In the present work we introduce a 

fault-tolerant nano scale memory architecture which 

tolerates transient faults both in the storage unit and 

in the supporting logic. 

 

Memory types: Electronic space provided by silicon 

chips (semiconductor memory chips) or 

magnetic/optical media as temporary or permanent 

storage for data and/or instructions to control a 

computer or execute one or more programs. Two  

 

main types of computer memory are (1) Read only 

memory (ROM), smaller part of a computer's silicon 

(solid state) memory that is fixed in size and 

permanently stores manufacturer's instructions to run 

the computer when it is switched on. (2) Random 

access memory (RAM), larger part of a computer's 

memory comprising of hard disk, CD, DVD, floppies 

etc., (together called secondary storage) and 

employed in running programs and in archiving of 

data. Memory chips provide access to stored data or 

instructions that is hundreds of times faster than that 

provided by secondary storage. 

 

Error Control Coding: Error detection and 

correction or error controls are techniques that enable 

reliable delivery of digital data over unreliable 

communication channels (or storage medium). Error 

detection is the detection of errors caused by noise or 

other impairments during transmission from the 

transmitter to the receiver. Error correction is the 

detection of errors and reconstruction of the original, 

error-free data. 

The goal of error control coding is to encode 

information in such a way that even if the channel (or 

storage medium) introduces errors, the receiver can 

correct the errors and recover the original transmitted 

information. ECC stands for "Error Correction 

Codes" and is a method used to detect and correct 

errors introduced during storage or transmission of 

data. Certain kinds of RAM chips inside a computer 

RESEARCH ARTICLE                                                                                  OPEN ACCESS 

http://www.businessdictionary.com/definition/electronic.html
http://www.businessdictionary.com/definition/silicon-chip.html
http://www.businessdictionary.com/definition/silicon-chip.html
http://www.businessdictionary.com/definition/silicon-chip.html
http://www.businessdictionary.com/definition/semiconductor.html
http://www.businessdictionary.com/definition/chip.html
http://www.businessdictionary.com/definition/media.html
http://www.businessdictionary.com/definition/storage.html
http://www.businessdictionary.com/definition/data.html
http://www.businessdictionary.com/definition/instructions.html
http://www.businessdictionary.com/definition/control.html
http://www.businessdictionary.com/definition/execute.html
http://www.businessdictionary.com/definition/program.html
http://www.businessdictionary.com/definition/type.html
http://www.businessdictionary.com/definition/read-only-memory-ROM.html
http://www.businessdictionary.com/definition/read-only-memory-ROM.html
http://www.businessdictionary.com/definition/read-only-memory-ROM.html
http://www.businessdictionary.com/definition/computer.html
http://www.businessdictionary.com/definition/solid-state.html
http://www.investorwords.com/8392/size.html
http://www.businessdictionary.com/definition/stores.html
http://www.businessdictionary.com/definition/manufacturer.html
http://www.businessdictionary.com/definition/random-access-memory-RAM.html
http://www.businessdictionary.com/definition/random-access-memory-RAM.html
http://www.businessdictionary.com/definition/random-access-memory-RAM.html
http://www.businessdictionary.com/definition/hard-disk.html
http://www.businessdictionary.com/definition/DVD-Digital-Video-Disk.html
http://www.businessdictionary.com/definition/secondary.html
http://www.businessdictionary.com/definition/employed.html
http://www.businessdictionary.com/definition/provide.html
http://www.businessdictionary.com/definition/access.html
http://www.businessdictionary.com/definition/time.html
http://wapedia.mobi/en/Digital_data
http://wapedia.mobi/en/Communication_channel


Y. Sharath et al Int. Journal of Engineering Research and Applications                         www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.681-689 

 

 
www.ijera.com                                                                                                                              682 | P a g e  

implement this technique to correct data errors and 

are known as ECC Memory. 

ECC Memory chips are predominantly used 

in servers rather than in client computers. Memory 

errors are proportional to the amount of RAM in a 

computer as well as the duration of operation. Since 

servers typically contain several Gigabytes of RAM 

and are in operation 24 hours a day, the likelihood of 

errors cropping up in their memory chips is 

comparatively high and hence they require ECC 

Memory. Memory errors that are not corrected 

immediately can eventually crash a computer. This 

again has more relevance to a server than a client 

computer in an office or home environment. When a 

client crashes, it normally does not affect other 

computers even when it is connected to a network, 

but when a server crashes it brings the entire network 

down with it. Hence ECC memory is mandatory for 

servers but optional for clients unless they are used 

for mission critical applications. 

 

Error-correcting codes 

Any error-correcting code can be used for 

error detection. A code with minimum Hamming 

distance, d, can detect up to d-1 errors in a code 

word. Using minimum-distance-based error-

correcting codes for error detection can be suitable if 

a strict limit on the minimum number of errors to be 

detected is desired. Codes with minimum Hamming 

distance d=2 are degenerate cases of error-correcting 

codes, and can be used to detect single errors. The 

parity bit is an example of a single-error-detecting 

code. The Berger code is an early example of a 

unidirectional error code  that can detect any number 

of errors on an asymmetric channel, provided that 

only transitions of cleared bits to set bits or set bits to 

cleared bits can occur. 

An error correcting code (ECC) or forward 

error correction (FEC) code is a system of adding 

redundant data, or parity data, to a message, such that 

it can be recovered by a receiver even when a number 

of errors (up to the capability of the code being used) 

were introduced, either during the process of 

transmission, or on storage. Since the receiver does 

not have to ask the sender for retransmission of the 

data, a back-channel is not required in forward error 

correction, and it is therefore suitable for simplex 

communication such as broadcasting. Error-

correcting codes are frequently used in lower-layer 

communication, as well as for reliable storage in 

media such as CDs, DVDs, hard disks, and RAM. 

 

Hamming Codes 
Hamming codes are an extension of this 

simple method that can used to detect and correct a 

larger set of errors. Hamming‟s development is a 

very direct construction of a code that permits 

correcting single-bit errors. He assumes that the data 

to be transmitted consists of a certain number of 

information bits u, and he adds to these a number of 

check bits p such that if a block is received that has at 

most one bit in error, then p identifies the bit that is in 

error (which may be one of the check bits). 

Specifically, in Hamming‟s code p is interpreted as 

an integer which is 0 if no error occurred, and 

otherwise is the 1-origined index of the bit that is in 

error. Let k be the number of information bits, and m 

the number of check bits used. Because the m check 

bits must check themselves as well as the information 

bits, the value of p, interpreted as an integer, must 

range from 0 to which are distinct values. Because m 

bits can distinguish cases, we must have 

12  kmm
                                               (1) 

This is known as the Hamming rule. It applies to any 

single error correcting (SEC) binary FEC block code 

in which all of the transmitted bits must be checked. 

The check bits will be interspersed among the 

information bits in a manner described below. 

Because p indexes the bit (if any) that is in error, the 

least significant bit of p must be 1 if the erroneous bit 

is in an odd position, and 0 if it is in an even position 

or if there is no error. A simple way to achieve this is 

to let the least significant bit of p, 0p , be an even 

parity check on the odd positions of the block, and to 

put 0p  in an odd position. The receiver then checks 

the parity of the odd positions (including that of 0p ). 

If the result is 1, an error has occurred in an odd 

position, and if the result is 0, either no error 

occurred or an error occurred in an even position. 

This satisfies the condition that p should be the index 

of the erroneous bit, or be 0 if no error occurred. 

 

Reed-Solomon codes 

Reed decoding algorithm was not known. A 

solution for the latter was found in 1969 by Berel and 

James Massey, and is since known as the Berlekamp-

Massey decoding algorithm . In 1977, RS codes were 

notably implemented in the Voyager program in the 

form of concatenated codes. The first commercial 

application in mass-produced consumer products 

appeared in 1982 with the compact disc, where two 

interleaved RS codes are used. 

The parameters of a Reed-Solomon code are 

m = the number of bits per symbol 

n = the block length in symbols 

k = the uncoded message length in symbols 

(n-k) = the parity check symbols (check bytes) 

t = the number of correctable symbol errors 

(n-k)=2t (for n-k even) 

(n-k)-1 = 2t (for n-k odd) 
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Therefore, an RS code may be described as an (n,k) 

code for any RS code where, 12  mn , and 

.2tkn   

Consider the RS (255,235) code. The encoder groups 

the message into 235 8-bit symbols and adds 20 8-bit 

symbols of redundancy to give a total block length of 

255 8-bit symbols. In this case, 8% of the transmitted 

message is redundant data. In general, due to decoder 

constraints, the block length cannot be arbitrarily 

large. The block length for the PerFEC codes is 

bounded by the following equation 

25521  nt  

The number of correctable symbol errors (t), 

and block length (n) is set by the user. 

The encoders and decoders for Hamming 

and Hsiao codes, for example, have low encoding 

and decoding complexity, but also have relatively 

low error- correcting capacity (e.g., Hamming is 

single error-correcting, double error-detecting). To 

achieve higher error- correcting capability, codes like 

Reed Solomon or BCH require more sophisticated 

decoding algorithms. 

 

LDPC CODES 

LOW-density parity-check (LDPC) codes 

were first discovered by Gallager in the early 1960s 

and have recently been rediscovered and generalized 

.It has been shown that these codes achieve a 

remarkable performance with iterative decoding that 

is very close to the Shannon limit. Consequently, 

these codes have become strong competitors to turbo 

codes for error control in many communication and 

digital storage systems where high reliability is 

required.LDPC codes can be constructed using 

random or deterministic approaches. In this report, 

we focus on a class of LDPC codes known as 

Euclidean Geometric (EG) LDPC codes, which are 

constructed deterministically using the points and 

lines of a Euclidean geometry [1, 16]. The EG LDPC 

codes that we consider are cyclic and consequently 

their encoding can be efficiently implemented with 

linear shift registers. Minimum distances for EG 

codes are also reasonably good and can be derived 

analytically. Iteratively decoded EG LDPC codes 

also seem to not have the serious error- floors that 

plague randomly-constructed LDPC codes; this fact 

can be explained by the observation made in that EG 

LDPC codes do not have pseudo-code words of 

weight smaller than their minimum distance. For 

these reasons, EG LDPC codes are good candidates 

for use in applications like optical communications 

that require very fast encoders and decoders and very 

low bit error-rates. 

In information theory , a low-density 

parity-check (LDPC) code is a linear error 

correcting code, a method of transmitting a message 

over a noisy transmission channel, and is constructed 

using a sparse bipartite graph. LDPC codes 

are capacity-approaching codes, which means that 

practical constructions exist that allow the noise 

threshold to be set very close (or 

even arbitrarily close on the BEC) to the theoretical 

maximum (the Shannon limit) for a symmetric 

memory-less channel. The noise threshold defines an 

upper bound for the channel noise, up to which the 

probability of lost information can be made as small 

as desired. Using iterative belief 

propagation techniques, LDPC codes can be decoded 

in time linear to their block length. 

LDPC codes are finding increasing use in 

applications where reliable and highly efficient 

information transfer over bandwidth or return-

channel constrained links in the presence of data-

corrupting noise is desired. Although implementation 

of LDPC codes has lagged that of other codes, 

notably turbo codes, the absence of 

encumbering software patents has made LDPC 

attractive to some. LDPC codes are also known 

as Gallager codes, in honor of Robert G. Gallager, 

who developed the LDPC concept in his doctoral 

dissertation at MIT in 1960. 

 

Function 

LDPC codes are defined by a sparse parity-

check matrix. This sparse matrix is often randomly 

generated, subject to the sparsity constraints. These 

codes were first designed by Gallager in 1962. 

Below is a graph fragment of an example 

LDPC code using Forney's factor graph notation. In 

this graph, n variable nodes in the top of the graph 

are connected to (n−k) constraint nodes in the bottom 

of the graph. This is a popular way of graphically 

representing an (n, k) LDPC code. The bits of a valid 

message, when placed on the T's at the top of the 

graph, satisfy the graphical constraints. Specifically, 

all lines connecting to a variable node (box with an 

'=' sign) have the same value, and all values 

connecting to a factor node (box with a '+' sign) must 

sum, module two, to zero (in other words, they must 

sum to an even number). 

 
 

Ignoring any lines going out of the picture, 

there are 8 possible 6-bit strings corresponding to 

http://en.wikipedia.org/wiki/File:Ldpc_code_fragment_factor_graph.svg


Y. Sharath et al Int. Journal of Engineering Research and Applications                         www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.681-689 

 

 
www.ijera.com                                                                                                                              684 | P a g e  

valid code words (i.e., 000000, 011001, 110010, 

101011, 111100, 100101, 001110, 010111). This 

LDPC code fragment represents a 3-bit message 

encoded as six bits. Redundancy is used, here, to 

increase the chance of recovering from channel 

errors. This is a (6, 3) linear code, with n = 6 

and k = 3. Once again ignoring lines going out of the 

picture, the parity-check matrix representing this 

graph fragment is 

 
 

In this matrix, each row represents one of 

the three parity-check constraints, while each column 

represents one of the six bits in the received 

codeword. 

In this example, the eight codewords can be 

obtained by putting the parity-check matrix H into 

this form  through basic row 

 
 

From this, the generator matrix G can be 

obtained as  (noting that in the special case 

of this being a binary code P = − P), or specifically 

 
Finally, by multiplying all eight possible 3-

bit strings by G, all eight valid codewords are 

obtained. For example, the codeword for the bit-

string '101' is obtained by 

 
 

Decoding:  

As with other codes, optimally decoding an 

LDPC code on the binary symmetric channel is 

an NP-complete problem, although techniques based 

on iterative belief propagation used in practice lead to 

good approximations. In contrast, belief propagation 

on the binary erasure channel is particularly simple 

where it consists of iterative constraint satisfaction. 

For example, consider that the valid codeword, 

101011, from the example above, is transmitted 

across a binary erasure channel and received with the 

first and fourth bit erased to yield ?01?11. Since the 

transmitted message must have satisfied the code 

constraints, the message can be represented by 

writing the received message on the top of the factor 

graph. 

In this example, the first bit cannot yet be 

recovered, because all of the constraints connected to 

it have more than one unknown bit. In order to 

proceed with decoding the message, constraints 

connecting to only one of the erased bits must be 

identified. In this example, either the second or third 

constraint suffices. Examining the second constraint, 

the fourth bit must have been 0, since only a 0 in that 

position would satisfy the constraint. This procedure 

is then iterated. The new value for the fourth bit can 

now be used in conjunction with the first constraint to 

recover the first bit as seen below. This means that 

the first bit must be a 1 to satisfy the leftmost 

constraint. Thus, the message can be decoded 

iteratively. For other channel models, the messages 

passed between the variable nodes and check nodes 

are real numbers, which express probabilities and 

likelihoods of belief. 

This result can be validated by multiplying 

the corrected codeword r by the parity-check 

matrix H 

 
Because the outcome z (the syndrome) of 

this operation is the 3 × 1 zero vector, the resulting 

codeword r is successfully validated. 

 

II. RELATED WORK 
Particularly, we identify a class of error-

correcting codes (ECCs) that guarantees the existence 

of a simple fault-tolerant detector design. This class 

satisfies a new, restricted definition for ECCs which 

guarantees that the ECC codeword has an appropriate 

redundancy structure such that it can detect multiple 

errors occurring in both the stored codeword in 

memory and the surrounding circuitries. We call this 

type of error-correcting codes, are fault-secure 

detector capable ECCs (FSD-ECC). The parity-check 

Matrix of an FSD-ECC has a particular structure that 

the decoder circuit, generated from the parity-check 

Matrix, is Fault-Secure. In this paper, we present our 

novel, restricted ECC definition for our fault-secure 

detector capable codes. Before starting the details of 

our new definition we briefly review basic linear 

ECCs. 

In this proposed system the encoder is 

protected with parity-prediction and parity checker. 

The decoder is protected by adding a code checker 

(detector) block. If the code checker detects a non-

codeword, then the error in the decoder is detected. 
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The restricted ECC definition which guarantees a 

fault-secure detector capable ECC is as follows. Let 

C be an ECC with minimum distance d. C is FSD-

ECC if it can detect any combination of overall (d – 

1) or fewer errors in the received codeword and in the 

detector circuitry. 

 

FSD-ECC: 

The restricted ECC definition which 

guarantees a FSD-ECC is as follows. 

Definition I Let be an ECC with minimum distance is 

FSD-ECC if it can detect any combination of overall 

or fewer errors in the received codeword and in the 

detector circuitry. 

 

Theorem I: Let  c  be an ECC, with minimum 

distance d . C  Is FSD-ECC if any error vector of 

weight  ,10  de  has syndrome vector of 

weight at least ed  . 

Note: The following proof depends on the fact that 

any single error in the detector circuitry can corrupt 

at most one output (one syndrome bit). This can be 

easily satisfied for any circuit by implementing the 

circuit in such a way that no logic element is shared 

among multiple output bits; therefore, any single 

error in the circuit corrupts at most one output (one 

syndrome bit). 

 

Proof: The core of a detector circuitry is a multiplier 

that implements the vector-matrix multiply of the 

received vector and the parity-check matrix to 

generate the syndrome vector. Now if e  errors strike 

the received codeword the syndrome weight of the 

error pattern is at least  ed   from the assumption. 

Furthermore, the maximum number of 

tolerable errors in the whole system is  ed  and e
errors already exist in the encoded vector, therefore 

the maximum number of errors that can strike in the 

detector circuitry is ed 1  . From the previous 

note, these many errors can corrupt at most  

ed 1  syndrome bit, which in worst case leaves 

at least one nonzero syndrome bit and therefore 

detects the errors. 

The difference between FSD-ECC and 

normal ECC is simply the demand on syndrome 

weight. That is, for error vector of weight 0e  , a 

normal ECC demands nonzero syndrome weight 

while FSD-ECC demands syndrome weight of  

.ed   

 

Euclidean Geometry Code Review 

The construction of Euclidean Geometry 

codes based on the lines and points of the 

corresponding finite geometries. Euclidean Geometry 

codes are also called EG-LDPC codes based on the 

fact that they are low-density parity-check (LDPC) 

codes. LDPC codes have a limited number of 1‟s in 

each row and column of the matrix; this limit 

guarantees limited complexity in their associated 

detectors and correctors making them fast and light 

weight. 

Low-Density Parity-Check (LDPC) codes 

are a class of recently re-discovered highly efficient 

linear block codes. They can provide performance 

very close to the channel capacity (the theoretical 

maximum) using an iterated soft-decision decoding 

approach, at linear time complexity in terms of their 

block length. LDPC codes were first introduced by 

Robert G. Gallager in his PhD thesis in 1960.LDPC 

codes are now used in many recent high-speed 

communication standards, such as DVB-S2 (Digital 

video broadcasting), WiMAX (IEEE 802.16e 

standard for microwave communications), High-

Speed Wireless LAN (IEEE 802.11n),10GBase-T 

Ethernet (802.3an) and G.hn/G.9960 (ITU-T 

Standard for networking over power lines, phone 

lines and coaxial cable). A Low Density Parity Check 

Code (LDPC) is one where the parity check matrix is 

binary and sparse, where most of the entries are zero 

and only a small fraction are 1's. In its simplest form 

the parity check matrix is constructed at random 

subject to some rather weak constraints on H. 

Let EG be a Euclidean Geometry with  n  

points and  J  lines. EG is a finite geometry that is 

shown to have the following fundamental structural 

properties 

1) Every line consists of    points; 

2) Any two points are connected by exactly one line; 

3) Every point is intersected by    lines; 

4) Two lines intersect in exactly one point or they are 

parallel; 

i.e., they do not intersect. 

Let  H be a nJ   binary matrix, whose 

rows and columns corresponds to lines and points in 

an  EG Euclidean geometry, respectively, where 

1, jih  if and only if the ith   line of EG contains 

the jth  point of  EG, and 0, jih otherwise. 

A row in H  displays the points on a 

specific line of EG and have weight  .A column in 

H displays the lines that intersect at a specific point 

in EG and have weight    . The rows of  H  are 

called the incidence vectors of the lines in EG, and 

the columns of H  are called the intersecting vectors 

of the points in EG. Therefore, H  is the incidence 

matrix of the lines in EG over the points in EG. It is 

shown in [15] that H  is a LDPC matrix, and 

therefore the code is an LDPC code. 
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A special subclass of EG-LDPC codes, type-

I 2-D EG-LDPC, is considered here. It is shown in 

[15] that type-I 2-D EG-LDPC has the following 

parameters for any positive integer 2t  

• Information bits, 
ttk 322   ; 

• Length, 122  tn  ; 

• Minimum distance, 12min  td ; 

• Dimensions of the parity-check matrix, nn  ; 

• Row weight of the parity-check matrix, 
t2 ; 

• Column weight of the parity-check matrix, 
t2  

. It is important to note that the rows of  H  

are not necessarily linearly independent, and 

therefore the number of rows do not necessarily 

represents the rank of the H  matrix. The rank of H  

is kn   which makes the code of this matrix linear 

code. Since the matrix is nn  , the implementation 

has n syndrome bits instead of kn  . The

)12()12( 22  tt
, parity-check matrix  H  of an 

EG Euclidean geometry can be formed by taking the 

incidence vector of a line in EG and its  222 t
 

cyclic shifts as rows; therefore this code is a cyclic 

code. 

 

FSD-ECC Proof for EG-LDPC 

In this section, we prove that EG-LDPC 

codes have the FSD-ECC property. 

 

Theorem II: Type-I 2-D EG-LDPC codes are FSD-

ECC. 

 

Proof: Let be an EG-LDPC code with column weight 

and minimum distance d .We have to show that any 

error vector of weight 10  de corrupting the 

received encoded vector has syndrome vector of 

weight at least ed   . 

Now a specific bit in the syndrome vector 

will be one if and only if the parity-check sum 

corresponding to this syndrome vector has an odd 

number of error bits present in it. Looking from the 

Euclidean geometry perspective, each error bit 

corresponds to a point in the geometry and each bit in 

the syndrome vector corresponds to a line. 

Consequently, we are interested in obtaining a lower 

bound on the number of lines that pass through an 

odd number of error points. We further lower bound 

this quantity by the number of lines that pass through 

exactly one of the error points. Based on the 

definition of the Euclidean geometry,   lines pass 

through each point; so error points potentially impact 

e  lines. Also at most one line connects two 

points. Therefore, looking at the e error points, there 

are at most 









2

e  lines between pairs of error points. 

Hence, the number of lines passing through a 

collection of these points  lower bounded by 











2

e
e  . Out of this number, at most 









2

e
 

lines connect two or more points of the error points. 

Summarizing all this, the number of lines passing 

through exactly one error point, which gives us the 

lower bound on the syndrome vector weight, is at 

least 









2
2

e
e . 

From the code properties introduced in Section A and 

knowing that 1 d , we can derive the 

following inequality 

)()1(
2

2)( edeee
e

ecs e 







   

ed     When   0e  

The previous inequality says that the weight of the 

syndrome vector of a codeword with  e errors is at 

least ed   when 0e  which is the required 

condition of Theorem (I). Therefore, EG-LDPC is 

FSD-ECC. 

 

III. IMPLEMENTATION 
FAULT-TOLERENT MEMORY SYSTEM 

We outline our memory system design that 

can tolerate errors in any part of the system, 

including the storage unit and encoder and corrector 

circuits using the fault-secure detector. For a 

particular ECC used for memory protection, let E  

be the maximum number of error bits that the code 

can correct and D be the maximum number of error 

bits that it can detect, and in one error combination 

that strikes the system, let ee , me , and ce  be the 

number of errors in encoder, a memory word, and 

corrector, and let dee  and dce  be the number of errors 

in the two separate detectors monitoring the encoder 

and corrector units. In conventional designs, the 

system would guarantee error correction as long as

Eem   and 0 ce ee . In contrast, here we 

guarantee that the system can correct any error 

combination as long as Eem  , Dee dcc  , nd 

Deee dccm  . This design is feasible when 

the following two fundamental properties are 

satisfied 

1) Any single error in the encoder or corrector 

circuitry can at most corrupt a single codeword bit 
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(i.e., no single error can propagate to multiple 

codeword bits); 

2) There is a fault secure detector that can detect any 

combination of errors in the received codeword along 

with errors in the detector circuit. This fault-secure 

detector can verify the correctness of the encoder and 

corrector operation. 

The first property is easily satisfied by 

preventing logic sharing between the circuits 

producing each codeword bit or information bit in the 

encoder and the corrector respectively. We define the 

requirements for a code to satisfy the second 

property. 

An overview of our proposed reliable 

memory system is shown in Fig. 3.1 and is described 

in the following. The information bits are fed into the 

encoder to encode the information vector, and the 

fault secure detector of the encoder verifies the 

validity of the encoded vector. If the detector detects 

any error, the encoding operation must be redone to 

generate the correct codeword. The codeword is then 

stored in the memory. During memory access 

operation, the stored code words will be accessed 

from the memory unit. Code words are susceptible to 

transient faults while they are stored in the memory; 

therefore a corrector unit is designed to correct 

potential errors in the retrieved code words. In our 

esign (see Fig. 3.1) all the memory words pass 

through the corrector and any potential error in the 

memory words will be corrected. Similar to the 

encoder unit, a fault-secure detector monitors the 

operation of the corrector unit. All the units shown in 

Fig. 3.1 are implemented in fault-prone the only 

component which must be implemented in reliable 

circuitry are two OR gates that accumulate the 

syndrome bits for the detectors. 

 

Fault Secure Detector 
The core of the detector operation is to 

generate the syndrome vector, which is basically 

implementing the following vector-matrix 

multiplication on the received encoded vector c  

and parity-check matrix H  

THcs .  

Therefore each bit of the syndrome vector is the 

product of c with one row of the parity-check 

matrix. This product is a linear binary sum over digits 

of c where the corresponding digit in the matrix 

row is 1. This binary sum is implemented with an 

XOR gate. Fig. 3.4 shows the detector circuit for the 

(15, 7, 5) EG-LDPC code. Since the row weight of 

the parity-check matrix is  , to generate one digit of 

the syndrome vector we need a  -input XOR gate, 

or )1(  2-input XOR gates. For the whole 

detector, it takes )1( n 2-input XOR gates. Table 

3.1 illustrates this quantity for some of the smaller 

EG-LDPC codes. Note that implementing each 

syndrome bit with a separate XOR gate satisfies the 

assumption of Theorem I of no logic sharing in 

detector circuit implementation. An error is detected 

if any of the syndrome bits has a nonzero value. The 

final error detection signal is implemented by an OR 

function of all the syndrome bits. The output of this -

input OR gate is the error detector signal. 

 

 

 

 

 

FIG: Fault-secure detector for (15, 7, 5) EG-LDPC 

code. 

 

Parallel Corrector 

For high error rates [e.g., when tolerating 

permanent defects in memory words as well], the 

corrector is used more frequently and its latency can 

impact the system performance. Therefore we can 

implement a parallel one-step majority corrector 

which is essentially n  copies of the single one-step 

majority-logic corrector. Fig. 3.1 shows a system 

integration using the parallel corrector. All the 

memory words are pipelined through the parallel 

corrector. This way the corrected memory words are 

generated every cycle. The detector in the parallel 

case monitors the operation of the corrector, if the 

output of the corrector is erroneous; the detector 

signals the corrector to repeat the operation. Note that 

faults detected in a nominally corrected memory 

word arise solely from faults in the detector and 

corrector circuitry and not from faults in the memory 

word. Since detector and corrector circuitry are 

relatively small compared to the memory system, the 

failure rate of these units is relatively low. 

Assuming our building blocks are two-input 

gates,  number of  -input parity-check sums will 

require )1(   two-input XOR gates. The size 

of the majority gate is defined by the sorting network 

implementation. Table 3.1 shows the overall area of a 

serial one-step majority-logic corrector in the number 

of two-input gates for the codes under consideration. 

The parallel implementation consists of exactly n
copies of the serial one-step majority- logic corrector. 

 

IV. RESULTS AND ANALYSIS 
 Simulation Results 

The behavioral simulation and post rout 

simulations waveforms for the fault secure encoder  

is shown in figure 5.1 and figure 5. 2. In the figure 

5.1,the  input is information vector and output is the 

detector output  d which detects the errors in the 

c0 
c8 

c12 

c14 

cj+8  
cj+12 

cj+14  

c7   
c11 

c13 
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encoder. First information vector is given to encoder 

it gives encoded vector as an output which is n-bit 

length. This encoded vector is given as input to the 

detector. Any error is present in encoded vector the 

detector output is „1‟. If it is „0‟ encoded codeword is 

correct. 

 
Figure: Behavioral simulation waveform for the fault 

secure encoder 

 

 
Figure: Post route simulation waveform for the fault 

secure encoder 

 

The behavioral simulation and post route 

simulation  waveforms for the fault secure memory 

system  is shown in figure 5. 3 and figure 5. 4. In fig 

3 inputs are I (information vector), clk, wen(write 

enable), ren(read enable), and e (error vector) to 

introduce an error. In this the encoded word is given 

to the memory  for this if „wen‟  is „1‟(high) data is 

write into memory in a perticular address, here 

address line is the information vector. If „ren‟ is high 

data is read and given as an output of memory. The 

memory output is combination of coded vector and 

error vector. This memory output is given as an input 

to the corrector which corrects the coded word. This 

corrected coded word is given to the detector to 

check whether coded word is correct or not.At the 

corrector side detector sinal is „md‟. 

 
Figure: Behavioral simulation waveform for the fault 

secure memory 

 

 
Figure:.Post route simulation waveform for the fault 

secure memory system 

V. CONCLUSION 
FPGA implementations of fault secure 

encoder and decoder for memory applications. Using 

this architecture tolerates transient faults both in the 

storage unit and in the supporting logic (i.e., encoder, 

decoder (corrector), and detector circuitries). The 

main advantage of the proposed architecture is using 

this detect-and-repeat technique we can correct 

potential transient errors in the encoder or corrector 

output and provide fault-tolerant memory system 

with fault-tolerant supporting circuitry. And also 

takes less area compared to other ECC techniques 

and in this architecture there is no need of decoder 

because we use systematic generated matrix. 

We presented a fully fault-tolerant memory 

system that is capable of tolerating errors not only in 

the memory bits but also in the supporting logic 

including the ECC encoder and corrector. We used 

Euclidean Geometry codes. 

We proved that these codes are part of a new 

subset of ECCs that have FSDs. Using these FSDs 

we design a fault-tolerant encoder and corrector, 

where the fault-secure detector monitors their 

operation. We also presented a unified approach to 

tolerate permanent defects and transient faults. This 

unified approach reduces the area overhead. Without 

this technique to tolerate errors in the ECC logic, we 

would required reliable (and consequently 

lithographic scale) encoders and decoders. 

Accounting for all the above area overhead factors, 

all the codes considered here achieve memory density 

of 20 to 100 GB/nm
2
, for large enough memory (≥ 

0.1 GB). Fault secure encoder and decoder for 

memory applications is to protect the memory and 

supporting logic from soft errors. The proposed 

architecture tolerates transient faults both in the 

storage unit and in the supporting logic.  Scope for 

further work is instead of memory we use nano 

memory which provides smaller, faster, and lower 

energy devices which allow more powerful and 

compact circuitry. 
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